3-partition problem - definition. What is 3-partition problem
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف


3-partition problem         
The 3-partition problem is a strongly NP-complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triplets that all have the same sum.
Partition (number theory)         
  • x
  • *
  • k}}
  • *
DECOMPOSITION OF AN INTEGER AS A SUM OF POSITIVE INTEGERS
Partition of an integer; Partition of a number; Ferrers graph; Ferrers diagram; Integer partition function; Partition of numbers; Rademacher's series; Ferrars diagram; Number partitioning problem; Integer partition; Integer partitions; Rademacher series; Ferrers Diagrams; Partition theory; Restricted partition; Conjugate partition; Conjugate partitions; Euler's partition theorem
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition.
Three-body problem         
  • elastically]] isn't.
  • The circular restricted three-body problem is a valid approximation of elliptical orbits found in the [[Solar System]], and this can be visualized as a combination of the potentials due to the gravity of the two primary bodies along with the centrifugal effect from their rotation ([[Coriolis effect]]s are dynamic and not shown). The [[Lagrange points]] can then be seen as the five places where the gradient on the resultant surface is zero (shown as blue lines), indicating that the forces are in balance there.
  • An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259.<ref>Here the gravitational constant ''G'' has been set to 1, and the initial conditions are '''r'''<sub>1</sub>(0) = −'''r'''<sub>3</sub>(0) = (−0.97000436, 0.24308753); '''r'''<sub>2</sub>(0) = (0,0); '''v'''<sub>1</sub>(0) = '''v'''<sub>3</sub>(0) = (0.4662036850, 0.4323657300); '''v'''<sub>2</sub>(0) = (−0.93240737, −0.86473146). The values are obtained from Chenciner & Montgomery (2000).</ref>
CLASSICAL MECHANICS PROBLEM OF THREE MASSIVE POINT PARTICLES INTERACTING VIA NEWTONIAN GRAVITY; SPECIAL CASE OF THE 𝑛‐BODY PROBLEM FOR 𝑛=3
Three body problem; 3 body problem; Problem of Three Bodies; Three-Body Problem; Earth-Moon-Sun system; Restricted three-body problem; Restricted three body problem; Restricted 3 body problem; Sundman's theorem for the 3-body problem; The three body problem; Circular restricted three-body problem; 3-body problem; Constant-pattern solution; Three Body Problem; Shape sphere; CR3BP; Three-body Problem; User:Dontbotherme123/Three-body Problem
In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the -body problem.